Alternative fix rigid for small particles

Trung Dac Nguyen¹, W. Michael Brown¹, Steve J. Plimpton²

¹ National Center for Computational Sciences, Oak Ridge National Laboratory

² Sandia National Laboratory

Rigid body models

- Coarse-grained model of:
 - Molecules: CO₂, H₂O, liquid crystals
 - Nanoparticles, colloids and granular particles in different shapes other than spherical
- LAMMPS fix rigid
 - Rigid body dynamics using quaternions:
 - Compute body forces/torques from atom forces
 - Advance body translational/rotational degrees of freedom in NVE, NVT, NPT or NPH
 - Assign constituent atoms' position and velocity from body centers of mass and velocities

LAMMPS documentation and source code: FixRigid

Fix rigid overhead

- Bottlenecks:
 - All-to-all communications for body forces and torques (MPI_Allreduce)
 - Replicas of body data updated by every MPI task:
 - Reset all the body forces and torques every time step
- Small particles (or bodies):
 - Body dimensions ~ communication cutoff (by default, pair cutoff + skin)
 - Straddle only two sub-domains in each proc grid dimension

Local communication schemes for small bodies

- Fix rigid/small (by SJP, released 2/2013)
 - Bodies are treated like atoms (no replicated body data)
 - Only one proc updates a given body which is only owned by a local atom
 - Comm::forward_comm_variable_fix() x 2
 - Send/receive updated body info after initial_integrate() and final_integrate()
 - Comm::reverse_comm_fix() x I
 - Tally body forces/torques to local bodies
 - Update local bodies and constituent local atoms
- Fix rigid/local (independent work since 2012)

fix rigid/local

 R_g = the maximum value of the radius of gyration of the rigid bodies in the system

- R_{comm} > 2R_g: <u>all procs that share a body</u> can acquire the full force/torque of the body via ghost atoms via Comm::forward_comm_fix()
- $R_g < R_{comm} < 2R_g$: <u>at least one proc</u> can acquire the full force/torque of the body via ghost atoms (need another call to **Comm::forward_comm_fix**() to broadcast)
- $R_{comm} < R_g$: dependent upon the processor grid and atom arrangement in bodies

FixRigidLocal implementation

- Derived from FixRigid
- Data structure:
 - Added an nbody array to avoid double count (unpacked_flag) array
 - Added an array of local and ghost bodies
- Member functions overridden from Fix
 - pack_comm() and unpack_comm(): tally body forces/torques via local and ghost atoms along with body indices (making sure no double count by toggling flags in the unpacked_flag array).
- Member functions overridden from FixRigid:
 - pack_exchange() and unpack_exchange(): migrate bodies with atoms (xcm, vcm, angmom, quat, imagebody, remapflag) in addition to body and displace
 - pre_neighbor(): update list of local and ghost bodies after exchange
 - initial_integrate(), final_integrate() and deform():
 - Reset forces and torques for local and ghost bodies before tallying (final_integrate())
 - Update only local bodies

Rigid body integration overhead

Densely packed structure formed by 1.3M tetrahedra (i.e. 47M atoms), Weeks-Chandler-Andersen potential (lj/cut w/ cutoff = $2^{1/6}\sigma$)

Benchmark results:

- Cray Titan XK7, 16-core AMD Opteron 2.2 GHz CPUs, Gemini interconnect
- Strong scaling analysis (number of atoms fixed, increasing number of MPI tasks)

Densely packed tetrahedra: lj/cut

Double gyroid by tethered nanorods: lj/cut

Rings formed by patchy particles: lj/cut

91 atoms per body

A2A = fix rigid P2P = fix rigid/local

Modest speedup

Systems where rigid body integration is not the primary bottleneck

Summary

- Rigid bodies of which dimensions are comparable to the communication cutoff should benefit from fix rigid/small and fix rigid/local
 - R_{comm}: communication single cutoff [value]
 - Further benefit from USER-OMP, GPU, USER-CUDA
- Rigid/local compared to rigid/small
 - Fewer local communications required: I (or 2) vs. 3
 - Replicated body data unresolved:
 - Conflict with spatial decomposition parallelism

Acknowledgements

LAMMPS with GPU Acceleration and Code Enhancements Available (Open Source):

http://lammps.sandia.gov

Department of Energy, Office of Science under Contract No. DE-AC05-00OR22725

Thanks for attention-Questions and comments?